
Everett Phillips
Yao Zhang

Roger Davis
John Owens

47th AIAA Aerospace Sciences Meeting
Jan. 5-8, 2009
Orlando, Florida

 Background/Motivation

 Advantages of Graphical Processing Units (GPU)

 Today’s GPU Hardware Capability

 Programming on the GPU

 Current GPU solver implimentations

 Results of Current Benchmarks

 Summary

 Graphical processing units (GPUs) have proven
success for gaming applications

 Recently shown to also be useful for scientific
simulations

 Current investigation focuses on demonstrating:
◦ Optimal performance gains using GPUs

◦ GPU performance gains for existing “general purpose”
codes typical of those used in government and
industry

 Order of magnitude increase in

 floating point

 memory bandwidth

 Very low cost

 Easy to program with new programming
models (CUDA)

 Good at processing large data sets where
same operation is applied over large arrays

 Scales well when added to cluster nodes

 Perfect fit for CFD applications

Figures courtesy NVIDIA

 More transistors devoted to data processing
(shown in green)

 Optimized for throughput

 Data Parallel (SPMD)

Figures courtesy NVIDIA

Figures courtesy NVIDIA

 Running Rocks Linux for
Clusters OS

 8 Nodes, each including:
 2.5 GHz quad-core CPU with 6

Mb cache

 8 Gigs DDR3 memory

 4 GPUs w/128 floating point
units each

 32 GPU/32 CPU cores

 Over 12 Teraflops

 Cost: $25,000

 Equivalent CPU cluster:
 500 nodes and ~$1,000,000

Figures courtesy NVIDIA

 Application of GPUs to Computational Fluid
Dynamics (CFD)

 Determine optimal performance gains using
Euler code constructed specifically for GPU

 Determine “typical” performance gains for
existing “general purpose” CFD codes

 Use MBFLO multi-block, structured-grid Navier-
Stokes code
 Arbitrary block connectivity and orientation

 Several turbulence modeling strategies including 2-
equation RANS, DES, and hybrid RANS/LES

 Current GPU implementation uses
◦ 1D decomposition (stripes)

◦ 2 layers of ghost nodes/cells

 General decomposition using distributive
operator underway

subroutine lamvis

do j = 1,jmax(n)
do i = 1,imax(n)
tott = (gama - 1.0)*(u6 - 0.5*(u7**2 u8**2)
xmu(1,i,j,n) = xmufree*(tott**1.5d0)/(tott + suthcnst)

enddo
enddo

__global__ void lamvis_kernel(...)
{
unsigned int i = threadIdx.x + (blockDim.x)*blockIdx.x;
unsigned int j = threadIdx.y + (blockDim.y)*blockIdx.y;
unsigned int index = i + j*(imax);
float tott,u6,u7,u8,output;
if(i<imax && j<jmax)
{
tott = (gama-1.0f)*(u6 - 0.5f*(u7*u7+u8*u8))/(rttovfree*gama);
xmu[index] = xmufree*powf(tott,1.5f)/(tott + suthcnst);

}
}
extern "C" void gpu_lamvis_(...)
{
dim3 dimBlock(16, 4, 1);
dim3 dimGrid ((imax+dimBlock.x-1)/(dimBlock.x), (jmax+dimBlock.y-
1)/(dimBlock.y));
lamvis_kernel<<<dimGrid, dimBlock>>>(...);
}

CPU Code

GPU Code

if(gpu==1) then
call gpu_function(...)

else
call function

endif

if(gpu==1) then
call gpu_pack_buffer(...)
call copy_to_host(buffer_d, buffer)
call blkbnd
call copy_to_gpu(buffer_d, buffer)
call gpu_unpack_buffer(...)

else
call blkbnd

endif

 Subsonic nozzle and supersonic diamond
airfoil
•Grids up to 6.4M points

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35

S
p
e
e
d

u
p

Number of GPUs

Ideal 6145 x 1025 3073 x 513 1537 x 257 385 x 65 97 x 17

496

368

208

28

Ideal

Unsteady Laminar Cylinder
Reynolds number 140
Mach Number 0.1Up to 16 Blocks in

Computational Grid

Entropy Contours

0 100 200 300 400 500 600

blkbnd transfers

updt

stress+lamvis

deltat

flux+smooth

cpu

Time (ms)

A
c
c
e
le

ra
te

d
 R

o
u
ti

n
e

flux smthu deltat stress lamvis blkbnd updt bcond

1.6x

2.5x

6x

7x

14x

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18

S
p

e
e
d
u
p

Number of GPU / CPU

1025 x 769 (gpu) 2049 x 1537 (gpu) 1025 x 769 (cpu) 2049 x 1537 (cpu)

88

59

14.7

Ideal GPU

Ideal CPU

 The GPU shows great promise in increasing
performance/price ratio by multiple orders in
magnitude

 Research underway to demonstrate
•Ease of use

•Generality for different algorithms

 Unsteady, turbulent flow

 Detached-eddy or hybrid
RANS/LES turbulence
modeling

 Goal for unsteady and
time-averaging:
•2D: under 30 seconds

•3D: under 1 hour

 Creation of GPU library with multilevel primitives
•Low-level (kernels: face-flux, stress, etc.)

•Medium-level (routines: flux, smoothing, etc)

•High-level (algorithms: slor, adi, etc.)

 Adaptive Mesh Refinement with GPUs

 Thanks to Department of Energy's Early
Career Principal Investigator Award (DE-
FG02-04ER25609)

 The authors would also like to thank the
managers of Wright-Patterson Air Force
Research Laboratory for partial support of
this effort under contract 03-S530-0002-11-
C1 with Dr. John Clark as technical monitor

 NVIDIA for hardware donations

