
Everett Phillips
Yao Zhang

Roger Davis
John Owens

47th AIAA Aerospace Sciences Meeting
Jan. 5-8, 2009
Orlando, Florida

 Background/Motivation

 Advantages of Graphical Processing Units (GPU)

 Today’s GPU Hardware Capability

 Programming on the GPU

 Current GPU solver implimentations

 Results of Current Benchmarks

 Summary

 Graphical processing units (GPUs) have proven
success for gaming applications

 Recently shown to also be useful for scientific
simulations

 Current investigation focuses on demonstrating:
◦ Optimal performance gains using GPUs

◦ GPU performance gains for existing “general purpose”
codes typical of those used in government and
industry

 Order of magnitude increase in

 floating point

 memory bandwidth

 Very low cost

 Easy to program with new programming
models (CUDA)

 Good at processing large data sets where
same operation is applied over large arrays

 Scales well when added to cluster nodes

 Perfect fit for CFD applications

Figures courtesy NVIDIA

 More transistors devoted to data processing
(shown in green)

 Optimized for throughput

 Data Parallel (SPMD)

Figures courtesy NVIDIA

Figures courtesy NVIDIA

 Running Rocks Linux for
Clusters OS

 8 Nodes, each including:
 2.5 GHz quad-core CPU with 6

Mb cache

 8 Gigs DDR3 memory

 4 GPUs w/128 floating point
units each

 32 GPU/32 CPU cores

 Over 12 Teraflops

 Cost: $25,000

 Equivalent CPU cluster:
 500 nodes and ~$1,000,000

Figures courtesy NVIDIA

 Application of GPUs to Computational Fluid
Dynamics (CFD)

 Determine optimal performance gains using
Euler code constructed specifically for GPU

 Determine “typical” performance gains for
existing “general purpose” CFD codes

 Use MBFLO multi-block, structured-grid Navier-
Stokes code
 Arbitrary block connectivity and orientation

 Several turbulence modeling strategies including 2-
equation RANS, DES, and hybrid RANS/LES

 Current GPU implementation uses
◦ 1D decomposition (stripes)

◦ 2 layers of ghost nodes/cells

 General decomposition using distributive
operator underway

subroutine lamvis

do j = 1,jmax(n)
do i = 1,imax(n)
tott = (gama - 1.0)*(u6 - 0.5*(u7**2 u8**2)
xmu(1,i,j,n) = xmufree*(tott**1.5d0)/(tott + suthcnst)

enddo
enddo

__global__ void lamvis_kernel(...)
{
unsigned int i = threadIdx.x + (blockDim.x)*blockIdx.x;
unsigned int j = threadIdx.y + (blockDim.y)*blockIdx.y;
unsigned int index = i + j*(imax);
float tott,u6,u7,u8,output;
if(i<imax && j<jmax)
{
tott = (gama-1.0f)*(u6 - 0.5f*(u7*u7+u8*u8))/(rttovfree*gama);
xmu[index] = xmufree*powf(tott,1.5f)/(tott + suthcnst);

}
}
extern "C" void gpu_lamvis_(...)
{
dim3 dimBlock(16, 4, 1);
dim3 dimGrid ((imax+dimBlock.x-1)/(dimBlock.x), (jmax+dimBlock.y-
1)/(dimBlock.y));
lamvis_kernel<<<dimGrid, dimBlock>>>(...);
}

CPU Code

GPU Code

if(gpu==1) then
call gpu_function(...)

else
call function

endif

if(gpu==1) then
call gpu_pack_buffer(...)
call copy_to_host(buffer_d, buffer)
call blkbnd
call copy_to_gpu(buffer_d, buffer)
call gpu_unpack_buffer(...)

else
call blkbnd

endif

 Subsonic nozzle and supersonic diamond
airfoil
•Grids up to 6.4M points

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35

S
p
e
e
d

u
p

Number of GPUs

Ideal 6145 x 1025 3073 x 513 1537 x 257 385 x 65 97 x 17

496

368

208

28

Ideal

Unsteady Laminar Cylinder
Reynolds number 140
Mach Number 0.1Up to 16 Blocks in

Computational Grid

Entropy Contours

0 100 200 300 400 500 600

blkbnd transfers

updt

stress+lamvis

deltat

flux+smooth

cpu

Time (ms)

A
c
c
e
le

ra
te

d
 R

o
u
ti

n
e

flux smthu deltat stress lamvis blkbnd updt bcond

1.6x

2.5x

6x

7x

14x

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18

S
p

e
e
d
u
p

Number of GPU / CPU

1025 x 769 (gpu) 2049 x 1537 (gpu) 1025 x 769 (cpu) 2049 x 1537 (cpu)

88

59

14.7

Ideal GPU

Ideal CPU

 The GPU shows great promise in increasing
performance/price ratio by multiple orders in
magnitude

 Research underway to demonstrate
•Ease of use

•Generality for different algorithms

 Unsteady, turbulent flow

 Detached-eddy or hybrid
RANS/LES turbulence
modeling

 Goal for unsteady and
time-averaging:
•2D: under 30 seconds

•3D: under 1 hour

 Creation of GPU library with multilevel primitives
•Low-level (kernels: face-flux, stress, etc.)

•Medium-level (routines: flux, smoothing, etc)

•High-level (algorithms: slor, adi, etc.)

 Adaptive Mesh Refinement with GPUs

 Thanks to Department of Energy's Early
Career Principal Investigator Award (DE-
FG02-04ER25609)

 The authors would also like to thank the
managers of Wright-Patterson Air Force
Research Laboratory for partial support of
this effort under contract 03-S530-0002-11-
C1 with Dr. John Clark as technical monitor

 NVIDIA for hardware donations

